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ABSTRACT 

A production system technique for recognizing regularities  in 

serial patterns  is presented  in  the context of the   letter series  extrapo- 

lation problem.    The  learning technique consists  of creating an crdered 

set of production  rules  to represent  the concept  of a pattern,   such that 

each rule is a hypothesis  about \<hid\ pattern contexts   le.id to which new 

pattern elements.     The  production system leaminv;  technique  is  compared 

with other series extrapolation methods and examples of series  concepts 

learned by a computer  implementation of the technique are given. 

Ill 
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SERIAL PATTERN ACQUISITION:     A PRODUCTION SYSTEM APPROACH 

by D.  A.  Watennan 

A major hurdle to be faced in implementing computer models of complex 

learning is the basic task of recognizing regularities in data.  This is 

particularly critical for so called "induction" type learning where a 

large number of specific data-representations must be mapped into a single 

more general data-representation. Much work has already been done on in- 

duction programs, particularly in the area of pattern recognition (Self- 

ridge and Neisser, 1963; Zobrist. 1971; Uhr, 1973) and sequence extrapola- 

tion (Feldman, 1963; Simon and kotovsky, 1963; Uhr, 1964; Solomonoff, 1964; 

Ernst and Newell, 1969; Klahr and Wallace, 1970; Williams, 1972; Hedrick, 1974; 

Hunt and Poltrock, 1974).  A somewhat different appioach to the problem of 

machine induction will now be presented. 

Ideally, what is neeued is a simple uniform technique for recognizing 

regularities in dsta, a technique which can bo considered a natural extension 

of basic associative learning techniques such as rote learning.  Such a tech- 

nique would tend to bridge the gap between simple learning like memorizing the 

addition table, and complex learning like inducing the concept of a series. 

In this paper a technique for recognizing regularities will be presented 

in the context of the series extrapolation problem. No attempt will be made 

here to generalize this technique to other induction type problems, although 

some sort of generalization seems feasible. First the problem of data repre- 

sentation will be discussed.  Then, the learning technique will be described 

as it applies to letter series extrapolation problems.  Finally, examples will 

be presented of series concepts learned by a computer implementation of the 

learning technique. 
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II. DATA REPRESENTATION 

Basic associative leaminj; can be thought 01" as associating a stimulus 

A with a response B.  This can be represented very naturally as a set of 

production rules (Newell and Simon, 1972), since a production rule is 

just a set ol" conditions associated with a particular set of actions. Thus 

a portion of the addition table for integers could be represented as the 

following ordered set ot rules: 

1.1 - 2 

1.2 - 3 

1,5^4 

1,4-5 

This is interpreted:  if you hnve 1 + 1 then the sum is 2, else if you have 

1+2 it's 3, etc. Only ordered production systems will be considered, 

that is, to obtain a result the conditions in the left-hnnd sides of the 

rules are compared to elements in some data base, and the highest priority 

rule (topmost rule) whose conditions all match data base elements has its 

actions executed. 

More complex information, such as letter series concepts can also be 

expressed in production system notation. For e.\;iniple, the concept of the 

series CLOCU can be represented as: 

1.1 C -> D 

(1) 
1.2 1) -C 

This can be interpreted:  if the last letter in the series is C then the 

next is D, else if the last is D then the next is C.  It is clear that this 

is all that is needed to extend the series indefinitely. 

Simple Letter Series Concepts 

The concept of a series will be defined to be a set of extrapolation 

rules, as in (1) above, together ivith a set of initialization rules. The 
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extrapolation rules contain enough information to extend the series, but 

both extrapolation and initializatJon rules are needed to ^nerato the 

series from scratch.  Initialization in (1) can be provided by including 

- C as the last rule of the production system, where the asterisk (•) 

represents a condition defined to match any data base, even an empty one. 

Thus if no extrapolation rules match the data base then the iritialization 

rule * ♦ c will match by definition.  In this paper the extrapolation rules 

will be referred to as the concept of the series, with the understanding 

that the actual concept also includes initialization rules. 

Consider the more interesting series, GBDGBGBDGBG.  This series is 

composed of repeated occurrences of the string GBDGh. Furthermore, it. 

description does not require the use of predecessor or successor relations 

on an alphabet. Series like this which can be described using nothing more 

than the equality or sarje relation will be called simple repetition type 

series. A production system (PS) representation of th« concept of this 

series is shown below. 

2.1 D G B -► G 

2.2 G B -> Ü 

(2) 

2.4      G ^ B 

This is interpreted: if the last 3 letters in the series are DGB the next 

letter is G. otherwise if the last 2 are GB the next is D. etc.  T^e rules 

are always applied to the growing end of the series and always result in the 

prediction of a single letter.  To indicate that the series starts with 

G. the initialization rule *- G is needed at the bottom of the production 

system. 

In production system (1) the regularities represented are the facts that 
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D  always follows C, and C always follows D.  In production system (2) they 

are tlrjt G always follows the string DGI, D follows all GB's not immediately 

preceeded by Ü, G always follows D, and B always follows G.  This shows, 

at least, that a production system representation is adequate for expressing 

the concept of a simple repetition type series in terms of its regularities. 

Sequence Prediction Tasks 

In the literature on induction and learning the work most closely 

related to production system representation of -eguiarities is the analysis 

made by Restle (1967) of subjects performing sequence prediction tasks. 

The subjects were given a series of binary events equivalent to a sequence 

of 1's and O's, and were asked to predict each event in the sequence, given 

the partial sequence prior to that event.  Tretraining and test sequences 

were analyzed in terms of generative rules*, i.e., grammar-like replacement 

rules tiat could be used to generate the sequences. The test sequence used 

was 111C01000111001,.., which has a period size of nine. Figure 1 compares 

Restle's replacement rules for the test sequence with a production system 

representation of that sequence. The replacement rules in no sense consti- 

tute a production system or even a Markov normal algorithm (Markov, 1954; 

Galler and Perils, 1970) for generating the series. Instead they define a 

grammar which can generate a number of series, including the test sequence. 

For example, the top replacement rule generates the seventh item of the 

sequence and is interpreted "if you have 1 then replace it with 0". Thus 

the test sequence can be generated by starting with 000 and applying the 

rules as shown below: 

000 => 1 i> 11 h  in i>  0 i> 00 => 1 Z> 0 l> 00 I* 000, 

*These rules were inferred by a manual analysis of the test sequence, rather 
than by a computer model of the induction task. 

       --- 



Item Predicted Repl acement Rules Production Rules 

(7) 1 ♦ 0 1 Ü 0 1 - Ü 

(6) 0 0 - 1 1 1 0 0 ■» 1 

(3) 1 1 -111 0 1 1 ♦ 1 

(2) 1 - 1 1 0 Ü 1 ■► 1 

(9) 0 0 • 0 0 0 1 0 (1 - 0 

(1) 0 0 Ü - 1 0 0 - 1 

(8.5) 0 -> 0 0 0 ♦ 0 

(4) 1 1 1 - 0 1 1 - 0 

Figui :  1.     Comparison of Restle's  replacement 
rules and production system rules  for 
the  series with period  lliOOlOOO. 
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The reason the replacement rule:  generate scries other than the test 

seauence is that some rules (/  and 2, 6 and 9] contain identical left 

hand sidjs.  Restle found that subjects make the most errors predicting 

items that these "optional" rules generate. 

The production rulei in Figure 1, unlike the replacement rules, repre- 

sent the concept of the test sequenct- since they have associated with them 

a general control mechanism (interpreter for ordered PS's) which defines 

their use.  Notice, however, that the replacement and production rules are 

pair-wise isomorphic, i.e., for each replacement -ie that predicts a 

symbol there is a corresponding production rule thac predicts the same symbol. 

The production rules which correspond to the "optional" replacement rules 

are the must complex, since they have the most symbols in their left hand 

sides. This occurs because enough context must be retained in the left hand 

side of the production rule to discriminate between similar alternatives. 

Thus within the PS framework one would expect the mc.;t errors during learning 

to occur on items generated by the most complex rules, which corresponds to 

the result obtained by Restle. We will now consider the problem of generating 

a concept from a series and will describe a learning technique capable of 

creating the productio:i rule representation shown in Figure 1. 

III.  BASIC LEARNING TECHN1QUL 

A learning technique will now be described that is a simple, uniform 

procedure for generating the concent of a series by finding regularities in 

the series.  In general terms, the technique consists of creating a hypothesis 

about a particular type of xegularity in the data, adding this hypothesis, 

in the form of a production rule, to the current set of hypotheses (the 

production system), and then using the data to test the hypotheses. When 

the data prove a hypothesis false, a new hypothesis is added above the 

■ 
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In terms  of series concepts,  each hypothesis consists of a production 

rule  formed  from a consecutive sequence of letters  from the series   (the 

condition)   and  the   letter assumed  to  follow that  sequence  (the action). 

Ihe action aKays  consists of just  a single  letter.*    Sequences of the 

series are presented to the production system   (first   letter,   first-two 

letters,   first-three  U-tters.   etc.)   and  it predicts what  the next   letter 

should be.     The prediction  is checked hy comparing it  to the next  letter in 

the actual  series.     Nkm the prediction is  in evror a new  rule  is  added 

to the  system above   the error-causim-   rule.     The new  rule contains one more 

letter in  its condition than the error-causing  rule and the actual  next 

letter as  its action.    The principle  is one of minimum local consistency. 

A new  rule  is  always a correct statement  about  the sequence,   and is  only 

created  following an error at precisely that point  in  the sequence.     When no 

prediction is made   (the  sequence of letters  fails  to match any of the  rules) 

a new  rule with a condition equal  to the  rightmost  letter of the  sequence 

and an action equal   to the actual next   letter is added. 

A  learning cycle  for a series  containing n+l  letters consists of pre- 

senting  the system with  the  first   letter,   the  first-two  letters,  on up 

through  the  first-n  letters,   and obtaining a prediction  in each case.     The 

learning phase  consists of repeated  learning cycles and  is complete when a 

learning cycle  is  encountered which produces nothing but  correct predictions. 

At this point  the production system represents the concept of the series  and 

"an be used to predict the ex^nsions of the series. 

svs P™ rn        T    /' m0re than 0ne  letter can also be USfcd to form production system concepts of series.    Such systems  can be generated using the same 
earning techniques described in this paper. One problem SS'.uS "stems 

predicted bv JhTrT ^V^^ed rules when the number of letters " 
predicted by the rules exceeds  the period size of the series being represented 
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An example of this technique applied tc the series GBOGKI will now 

be presented.  Initially the system contains no rules and thus fails to 

predict the first letter of the series.  This error leads to the creation 

of the default rule * -> G.  Now G is given to the system and matches the 

default rule.  This is considered an error* so tin- rule G - B is added. 

Now GB is presented, does not match G - B. but does match the default rule, 

Since this is considered an error B • [) is added.  Next GBI» is presented 

and ?lso  matches only the default rule, leading to the addition of the 

rule Ü -+ G.  The system now looks like: 

3.1 D ■> G 

3.2 B -v D 

(3) 
3.3 G ->• B 

3.4 * > G 

Next GBDG is presented, which matches 3.3. predicting that the next letter 

is B. From the series we see this is indeed the next letter so no new 

rule is necessary.  Next. GBÜGB is presented which matches 3.2. predicting 

that the next letter is D.  From the series we see the next letter is 

actually G. so the rule G B -> G is added.  Next GBDGBG is presented and 

matches 3.5. correctly predicting B. Now the first cycle is complete, but 

since errors occurred the process starts over, and G is presented to the 

system, which is now: 

4.1 G B -> G 

4.2 D - G 

4.3 B H- D 

4.4 G H- B 

4.5 *  ♦ G 

(4) 

7rl%UrlLi0r■init\aliZati0n)  ruleS are always considered to make erroneous predictions  in order to accelerate the learning process. 
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G matches 4.4 and the correct prediction is made. But now GB is presented 

and leads to an incorrect prediction, thus G B ^ D is added.  GBD and GBDG 

both elicit correct predictions but GBDGB matches 6 B ••> 0 which predicts 

D instead of G. Thus D G B -> G is added. After one more correct predic- 

tion the third cycle begins, but this time all predictions are correct 

and thus the learning phase terminates. Figure 2 diagrams the rule acquisi- 

tion process fo. this particular series, showing the first two cycles. 

The rules learned are: 

5.1 D G B -> G 

5.2 G B -> D 

5.3 G B -► G (5) 

5.4 D -> G 

5.5 B -► D 

5.6 G -> B 

5.7 * -v G 

We will consider the concept of the series to be the set of non-redundant* 

rule- learned, i.e.. the rules that can be accessed using this series as 

context.  We see that G B -^ D (rule 5.2) makes G B - G (rule 5.3) uncondi- 

tionally redundant, and B - D (rule 5.5) contextually redundant (since, in 

this particular series. G always occurs before B). The default rule is 

always contextually redundant. Removing these redundant rules from produc- 

tion system (5) gives the concept of the series as shown in production system (2).** 

This learning technique will handle all letter series based on simple 

repetition and this is a theory for recognizing regularities in such series. 

*See Wateman (1970) for a discussion of redundancy as applied to ordered 
production systems. 

**The system does not have to remove these rules since their presence cannot 
attect system output.  In the current implementation the rules are left in- 
however, they could be removed by having the system keep track of non-firing 
rules, eventually eliminating them. »»m 

■  
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\       no match/5.6 created 
G   ^ 

\       no match/5.5 created 
G    B    ^ 

v       no match/5.4 created 
G    B    D    G 

V       5.6 matches/correct 
G    B    DGB 

v       5.5 matches/5.5 created 
G    B    D    G     B    G 

v       5.6 matches/correct 
G    B    D    G     BGB 

i—i 

a.    Cycle  1 

\       5.6 matches/correct 
LG B 

^v       5.5 matches/5.2 created 
C    B    D 

^*v      5.4 matches/correct 
GBO    G 

(■     B    D    G    B 
\       5.6 matches/correct 

G B D G B G 

G B D G B G B 
i  

b. Cycle 2 

v  5.2 matches/5.1 created 

5.6 matches/correct 

Figure 2. Diagram of Learning Technique on GBDGBGB 
for first two cycles, (Underlined letters 
at tail of arrow indicate letters used as 
rule left hand sides.  Letter at .iead of 
arrow is rule right hand side). 

^^bal^#WMKjB J 
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In fact, it is an instantiation of the compound stimulus hypothesis 

(Restle and Brown, 1970) in which a response is assumed to be associated 

with some sequence of adjacent past events. Restle and Brown found a 

positive but weak relationship between number of errors at a position and 

number of previous events required to specify the nsxt event. During 

production system learning the number of errors made at each position in 

the pattern tends to be proportional to the number of elements in the condi- 

tion side of the rule that r edicts an element for that position. This is 

true because each error during learning is corrected by effectively adding 

one new stimulus element to the condition side of the error-causing rule. 

Now we will see how an extension of this technique can be applied to more 

complex letter series extrapolation problems. 

IV.  REPRESENTATION OF COMPLEX LETTER SERIES 

The simplest type of letter series other than those characterized by 

simple repetition are those requiring the use of predecessor and successor 

operations on the alphabet or any explicitly defined ordered list of symbols. 

Examples of such series are ABCDEF, AAABBBCCC, and DEFGEFGH. To represent 

series of this type, the system must be able to handle the concept of varia- 

bles and must be given the capability for executing both predecessor and 

successor operations on the alphabet. 

Production System Representation 

In the production system representation of complex letter series 

variables will be indicated by the symbols xl, x2, x3, ..., and predecessor 

and successor operations by an apostrophe (') before or after a variable. 

Thus 'xl represents the predecessor of xl, and xl' its successor. A 

variable in the condition side of a rule inatches anything and is temporarily 

bound to the value of what it matches, thus a bound variable can be used 

- ■ ■ — =  
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in the action side of a rule. 

With these refinements, the concept of the series ABCDEF can be repre- 

sented as xl - xl- . This rule is interj.reted: if the last letter of the 

series is anv letter then the next letter in the series is the successor 

of that letter.  Initialization would be accomplished by the rule * * A. 

Conversely, the series ZYXWVU can be represented as xl - 'xl, with * ->  Z 

for initialization. 

Simple repetition can now be represented in a very compact manner, 

i.e., consider the two simple repetition series discussed earlier.  The 

first, CDCDCD, instead of requiring the two rules shown in production system 

(1) only requires one rule to represent its concept: 

xl x2 ♦ xl. (6) 

The second series. GBDGBGBDGBG. instead of requiring the four rules shown 

in production system (2) also requires only one rule to represent its 

concept: 

xl x2 x3 x4 x5 -»■ xl. (71 

It should be clear that any simple repetition series of period n can be 

represented by a single rule of the form: 

xl x2 x3 ... xn -* xl. (g) 

Now consider the more complicated series AZCXEVGT.  Its concept can 

be represented as: 

xl x2 xl" -^ ' ,x2 

(9) 
xl x2 -> xit . 

where double apostrophes stand for double predecessor or successor.  If 

we apply these rules to the series the first rule fails to match (since T 

is not the double successor of V) but the second matches, predicting that 

the next letter is I.  If the rules are now applied to AZCXEVGTI, the first 
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rule matches, predicting the letter R. Thus (9) can be used to extrapolate 

the series as shown below. 

AZCXEVGTIRKPMNO ... (IQ) 

Comparison with other Representations 

Other programs have been written which solve letter series extrapolation 

problems (Simon and Kotovsky, 1963; Klahr and Wallace, 1970; Williams. 1972; 

Hedrick, 1974; Hunt and Poltrock, 1974). The Klahr and Wallace (KdW) model 

represents series concepts solely on the basis of inter-period relations, i.e., 

relations between letters occupyinq the same relative position in adjacent per- 

iods. For example, letting s stand for same, n for next, p for prior, n2 for 

double next, and p for double prior, the concept of series (10) would be: 

2 2 
n p . The number of relations is the period size (in this case 2), and 

the representation is called the pattern template.  Simple repetition is 

represented as a sequence of m same's, where m is the period sir«. Thus the 

concept of GBDGBGBDGBG is just sssss. 

The Hedrick mocel represents series concepts as a set of unordered, 

grammar-like productions which can be used to parse a given input sequence 

to determine if it is an instance of the series in question. For example, 

the series ABCDEF... would have a representation equivalent to the grammar:* 

si -^ A B 

si ♦ si next(last letter of si) . 

Thus when given the sequence ABCD the system would recognize it as an 

instance of si (the series ABCDEF...), since the above rules lead to the 

*ThiS is a gross simplification of the actual representation. The rules 
are condition-action pairs where the conditions are pattern matches on 
both the series and an intermediate semantic net which can be modified by 
the actions. Thus the model is effectively a production system implemen- 
tation of a grammar. 
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parse shown below. 

next si 

The Jledrick model learns the concept of a scries from a set of examples 

(positive instances) by creating and generalizing productions which 

classify the components of the series. The model would have to be given 

AB, ABC, and ABCD before it could acquire the concept of the above series. 

The Williams model is part of a more general program for inducing 

performance strategies from examples taken from aptitude tests. Series 

concepts are represented in a way very similar to the template representa- 

tion of Klahr and Wallace. Rule- aw constructed which define the inter- 

period relations same and next, one rule for each element in the period. 

For example, series (10) would be 

Rule  Relation  Iteration  Start  Move  Alphabet 

1- next       2       1     2    Forward English 

2- next       2       2    2    Backward English. 

Rule 1 states that the double next (next with iteration 2) relation on the 

forward alphabet holds between letters which are 2 positions apart, starting 

at position 1. Rule 2 is the same except that the starting point is 

position 2 and the alphabet is the backward one. This representation is 

essentially a generalization of the template representation. 

mttu 
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The Hunt and Poltrock model represents series concepts on the basis of 

both inter-period and intra-period relations. This model uses the sa^e three 

basic relations used by the other models: same, next, and predecessor. These 

relations can be applied either to adjacent letters within a period or to letters 

with corresponding positions in adjacent periods. The series concept is repre- 

sented as a set of rules, one for each letter in the period, and relates each 

letter to some other letter in the series. A series of period n is shown below. 

Sl S2 S3 Sn Zl z7 z3 ••• 2n 

The model represents the series as n rules, the first relating «j to either 

sn or s1. the second relating z2  to either z^  or »^ etc. Thus the concept of 

the serxes AAABBBCCC would be: 

ij - next(s3) 

1. = same(z ) 

z^ = same(27) . 

Simple repetition is handled by a set of inter-period rules. To illustrate, 

the concept of GBDGBGBDGBG is s-iown below. 

z = same(s ) 

z2 = same(s7) 

23 = same(s ) 

24 = same(s4) 

z5 = same(s ) 

Initialization information, such as ^ - G,  s2 -  B, s3 = D. s4 = G. and 

s5 = B, must also be included as part of the concept. 

The Hunt and Poltrock model does not recognize multiple next or predecessor 

relations; nor does it permit the description of relations between letters with 

non-corresponding positions in adjacent periods. Ifcu. the concept of series 

(10) cannot be described. However, this is more a deficiency of the model than 

of the representational technique used to describe series concepts. 

   -- 
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The Simon and Kotovsky (S«) model represents series concepts pri- 

marily on the basis of intra-period relations.  This requires a mechanism 

for stepping a pointer fonvard through an arbitrary alphabet (the successor 

operation), a mechanism for resetting the pointer to any arbitrary location 

in the alphabet, and a mechanism for constructing arbitrary circular 

alphabets. The standard forward and backward circular alphabets art- 

initially available. T^  concept of the series AAABBBCCC would be: 

i 1 = [alphabet] ;A 

(11) 
inl,ml,ml,n(ml) 

where ml is the forward alphabet with pointer initialized to A. Th» n(ml) 

represents the act of stepping the pointer to the next position in the 

alphabet and does not represent the generation of a letter cf the series, 

as do the mi's.  The concept of scries (10) would be: 

ml = [alphabet];A 

m2 = [backward alphabet] ;Z (12) 

ml.n(ml).n(ml),m2,n(m2),n(m2)  . 

Here two separate alphabets, ml and ..:. are required.  Simple repetition can 

be handled by cwating an arbitrary alphabet from the letters comprising 

one period of the series, i.e.. the concept of GBDGBGBDGBG would be: 

ml = [GBDGB];G 

ml.n(ml) 

A comparison of the PS. Sf,K. and Kf.W representations is given in 

Table 1, using series taken from Simon and Kotovsky (1965). Note that in 

the S§K notation inter-period relations are implicit rather than explicit, 

while in the K§W notation intra-period relations cannot be described at 

all. However in production system notation both can be explicitly described, 

as illustrated by the first two columns of the Table. 
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One advantage of using a PS representation is that it permits iritiali- 

zation rules to be represented in a form identical to extrapolation rules. 

Furthermore, there is a certain degree of independence between initializa- 

tion and extrapolation which makes it possible to extrapola'^ a given 

series without using initialization information. With the Kf,K  representa- 

tion this is also possible, but the system must effectively regenerate the 

series from scratch in order to extrapolati it  To extrapolate a series 

using S§K extrapolation rules the system must obtain the initialization 

information from the series (a nor.-triviai .ask) and then use it to regen- 

erate the series from scratch. 

Representation of Hierarchical Sequencer 

Sequential behavior can be analyzed in terms of hierarchical systems 

(Chomsky, 1963;  Restle, 1970) and we will now compare one such analysis 

with a corresponding production system analysis. Restle (1970) developed a 

notation for describing a hierarchical sequence as a series of nested 

operators:  T., R and M, which can transpose (add or subtract by i), repeat, 

or mirror (reflect) sequences given as arguments.  For example, T (3) is 

(3 4) and T+3(3 4) is (3467).  Similarly. R(3) is (3 3) and R(l 2) is 

(1 2 1 2)*.  Thus the pattern 31316464 can be represented as 

^j(R(T «(S)))«  This is equivalent to representing the pattern as a regular 

binary tree. 

The hierarchical pattern 3 1 3 1 b 4 6 4 can also be represented by 

the following production system: 

13.1 xl x2 x3 x4 ♦ i l1" 

13.2 xl x2 -* xl (13) 

13.3 xl ^ "xl 

*For a description of the "mirror" operation see Restle (1970). 
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It*  pattern is generated from the initial element 3 by one application of 

rule 13.3 (to produce 3 1). two applications of 13.: (to prodlX« 3 13 1) 

and four applications of 13.1 (to produce 3 13 16 4 6 4). Note that 

each production rule is analogous to one of the Restle operators (or one 

level in the corresponding binary tree). Hierarchical sequences based on 

transposition and repetition can be described in terms of this PS notation 

since these operations map directly into the predecessor, successor, and 

same relations used by the PS's in this paper. 

Greeno and Simon (1974) have analyzed the problem of convertxng sequence 

information stored as a hierarchy of operators Into serially ordered per- 

fonnance.  The analysis was made on information represented in Restle's 

notation and considered questions about the requirements made by the inter- 

pretive process on memory storage and computaticnal complexity. Three 

interpretive processes (push Jown. recompute, and doubling) were presented 

for producing the sequence 5 6 2 3 4 5 1 2 from ^(1^(5))). and each 

was analyzed in terms of storage and computational requirements.  One of 

these processes, called doubling, involves the application of identical 

operators several times in succession, as illustrated in Figure 3.  This 

particular interpretive process is identical to the one used to interpret 

a production system reF.dentation of this pattern. For example, the above 

sequence can be represented in PS form as: 

14.1  xl x2 x3 x4 ♦ 'xl 

14-2       xl x2 - '"xl ^4) 

14-3 xl - xl' 

If we map rule 14.1 into the operator T^. 14.2 into T,. and 14.3 into T , 

we see that the sequence of rule applications which generates the series is 

the same sequence given in Figure 3. Greeno and Simon found that the 

- -  
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Figure 3. Doubling interpretive process for 
producing a sequence from 
T-l(T-3(TiC5))).  (Taken from 
Greeno and Simon, 1974). 

>. i  
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düubling interi)retation process, when compared with the other two, 

minimized the number of operator applications and perator retrievals from 

memory, while maximizing the amount of short-term memory requ.red.* Thus 

we conclude that a production system represent .cion of serial patterns 

implies a process for which computational complexity lias been reduced at 

the expense of memory requirements. 

■ 

V.  EXTENSION OF LEARNING TECHNIQUE 

The primary interest here is in developing a simple uniform technique 

for generating the concept of a complex letter series. The creation of com- 

pact or minimal sets of rules is considered to be of secondary importance. 

An extension of the previously discussed learning technique will now be 

presented. Since series based on alphabets are used, rules must now be 

generalized before being added to the system. For example, the series Ai3CD 

cannot be extrapolated from the rules A -* B, B -+ C, and C - D. A generalized 

version of these rules, namely xl -► xV,  provides the needed predictive 

power. But the need to generalize rules leads to another problem: that of 

determining which relations between letters should be made explicit in the 

generalization. This is a non-trivial problem because the s^r-tem will 

either make errors or become bogged down in backtracking if spurious rela- 

tions are made explicit (Waterman, 1974). This problem is solved by 

hypothesizing a period size and then making explicit only relations between 

letters which occupy the same relative position within adjacent periods. 

This method for limiting the search for relevant relations is called the 

template strategy. Since this technique deals only with inter-period rela- 

tions it creates production systems similar to those shown in column 1 

of Table 1. 

*For m operators the number of operator applications was 2 - 1, operator 
retrievals was m, and maximum memory capacity 2m"1. 
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Example of Production System Series Extrapolation 

The new production system learning technique is identical to the 

earlier one with the following exceptions: 

1. Only one cycle through the series is necessary, regardless 
of errors. 

2. New rules are added immediately above the error-causing rule, 
rather than above all the current rules. 

3. A generalized version of each rule is added to the system, 
rather than a specific one, and only inter-period relations 
are made explicit. 

4. Period size is hypothesized, in order from 1 to n, where n 
is the length of the given series. For each period size 
hypothesis one learning cycle is attempted. The cycle is 
aborted and the period size hypothesis incremented whenever 
(a) no relation can be found between letters occupying the 
same relative position in adjacent periods, or (b) the 
number of rules added exceeds the period size hypothesis. 

An example using the serie' ABMCDMKF will illustrate this procedure. The 

initial period size hypothesis is 1, and no rules are present. The context 

A is presented to the system; since there are no rules an error results 

and the rule A -•■ B is generalized and added to the system. Since the period 

is assumed to b 1 the relation between A and B is made explicit and A -»■ B 

is added as xl ♦xl*. Next the context AB is presented which matches the 

rule just added and C is predicted, rather than the correct letter M. Thus 

a new rule must be added.  However this would make the number of rules (2) 

larger than the period size (1), so the cycle is aborted and starts over 

with a period size hypothesis of 2 and no rules present. 

Now the context A is presented; it leads to an error since no rules 

are present, and the rule A H- B is generalized and added as xl -> B, since 

A and B are now both in the same period. Next AB is presented which matches 

the rule just added and B is predicted rather than the correct letter M. 

Thus the rule A B -► M is generalized and added, except that here the 

generalization fails since no relation can be found between A and M 

(nothing higher than triple predecessor and successors are considered). 

- 
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As before the cycle  is  aborted and starts over with no  rules present and 

a period size hypothesis  of 3. 

Again the context A  leads  to an error and xl  -> B  is  added to the 

system.     Then AB is presented,   leading to the erroneous  prediction of B. 

Thus A B -> M is generalized and added as xl  x2 * M,   since A,  B,  and M are 

all in the same period.     The set of rules  is now: 

15.1 xl x2 -* M    (initialization) 

15.2 xl   * B     (initialization) 

Here "initialization"  indicates that these are intra-period rules needed 

for initialization of the series but not for extrapolation.    To accelerate 

learning this  type of rule is  always considered to  lead to an erroneous 

prediction.    Next the context ABM is presented,  matching 15.1 which predicts 

M rather than the correct  letter,  C.    So the rule A B M -* C is generalized 

and added above  15.1  to produce: 

16.1 xl x2 x5 ->■ xl' '     (1) 

16.2 xl x2 ->  M    (initialization)      (16) 

16.3 xl -^ B    (initialization) 

where the (1) indicates that this  is the first rule added that counts relative 

to the abort decision based on the number of rules added (only inter-period 

rules are counted). Next the context ABMC is presented which matches 16.1 

and correctly predicts D as the next letter. Now the context ABMCD is 

presented, again matching 16.1 but incorrectly predicting 0.  Thus the rule 

B M C D -• M is generalized and added to produce: 

17.1 xl M x3 xl' ' H- M   (2) 

17.2 xl x2 x3 *  xl" (1) 

l7-3       xl x2 ■+ M   (initialization) 

I7»4 xl -► B   (initialization) 

(17) 

 " 
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Finally, when ABMCDM and ABMCDME are presented they elicit correct predic- 

tions and the learning phase is complete. Now the entire series ABMCDMEF 

is presented and the correct extrapolation, letter M. is made. The concept 

of the series is considered co be the extrapolation rules (17.1 and 17.2) 

plus the initialization rules (17.3 and 17.4) shown in (17).* 

Rule generalization is straightforward and requires the rule, the 

series, and the hypothesized period size. For example, if the rule is 

B B C ^ B and the series is ABBCBAE with period si-e 3, then, as shown 

below, arrows can be drawn between letters whose relations are to be made 

explicit. 

ABB/CBA/E 

Now the rule B B C -> B has only one such arrow, thus only the relation 

between the first and last B is made explicit. Since it is a same_ relation 

it can be made explicit by usinj; total generalization to get xl x2 x3 ♦ xl 

or partial generalization to get B x2 x3 ^ B.  Partial generalization can 

only be used for two letters connected by the same relation, and never for 

letters connected by predecessor or successor relations. 

The learning technique j\a*  described works when only total generaliza- 

tion on same is permitted and also when only partial generalization on same 

is permitted.  But in the former case the concept learned for series con- 

taining simple repetition is much more compact. Thus in the computer 

implementation of this learning technique, total generalization on same 

occurs on the first inter-period rule added to the system during each cycle. 

The default rule * -* A is also needed to generate the series from scratch 
in the current computer implementation of the extended learning technique 
all initialization rules, except the default one, are learned during 
the noraial execution of the technique. Thus to generate complete series 
the system must be given either the first letter, the default rule, or a 
trivial program modification which causes automatic generation of the 
default rule. 

M» 
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and partial generalization occurs on all the subseqaent  rules  added. 

Since total generalization on same always  leads  to a single rule repre- 

sentation of simple repetition series,  this procedure is equivalent  to 

the heuristic:    "check to see if you have a simple repetition series 

before proceeding with the more complex series extrapolation methods". 

Comparison with Other Series Extrapolation Techniques 

The production system learning technique just illustrated is  a method 

for leaminc series concepts based solely on inter-period relations.     In 

this  respect it  is similar to the K|N template matching technique  for 

series extrapolation.    There are some differences,  however.     First,   for 

template matching the series must always exhibit two complete periods or 

the template will not be complete,   and no predictions  can be made.     In the 

PS technique two periods    are not always required since the method auto- 

matically hypothesizes  that the inter-period relations not yet specified 

are similar to those already learned.     For example,  the template technique 

fails on the series AABBACB,  even though this can be extrapolated 

AABBACBDAEBFA.     It can be  thought of as the series ABABABA interleaved 

with ABCDEF.    The PS technique*  applied to AABBACB produces  the series 

concept: 

xl  x2 x3 x4 xl -► X2'1 

(18) 
xl x2 x3 x4 -* xl       , 

from which the correct extrapolation can be made.    A second difference 

between the template technique and the PS technique is  that the former 

always  finds a concept based on the shortest period whereas the  latter 

*For this example only,  the technique consists of using only total generali- 
zation on same. 
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may find a concept based on some multiple of the shortest period. Even 

when this occurs the predictions made by the PS technique are identical 

to those made by the template technique. 

A production system learning technique based on intra-period relations 

has not yet been developed, but might prove to be a promising area for 

continued research. One of the major problems with this approach is the 

difficulty during the learning phase of distinguishing between relevant 

and spurious intra-period relations. Both the Simon-Kotovsky and Hunt-Poltrock 

models dealt with this problem «,ith a certain degree of success, thus the heur- 

istics they used should provide useful guidelines for an adaptive production 

system implementation. 

Computer Implementation of Production System Learning Techniques 

Both the basic learning technique (applied to simple repetition series) 

and the extended learning technique (applied to scries using circular alpha- 

bets) have been realized as computer programs written in the PAS-II system 

(Waterman and Newell. 1973). Each program is a short production system 

which can modify itself by adding new production rules. The rules added by 

the system represent the concept of the series being learned. A complete 

description of these self-modifying production systems is given elsewhere 

(Waterman. 1974). 

Examples of series concepts learned by SCI, the program employing the 

basic learning technique, are shown in Figure 4.  Both Figure 5* and 

Table 1 (first column) contain series concepts learned by SC2, the program 

employing the extended learning technique. Here redundant ruleü have been 

^The series in Figure 5 were taken from Williams (1972). 
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Series Concept Predictions 

1. AABAABA B ^ A 
A A H- B 

A -* A 

AAB 

2. ABACABA C -> A 
B A H- C 

B -^ A 
A -»■ B 

CAB 

5. GBUGBGBÜG 1) G B - G 
G B -^ D 

D * G 
G - B 

BGB 

4. BBABCBBBBA B B 
B 
c 

B B -* A 
B B - B 
B B -> B 

C ^ B 
A B -^ C 

A - B 
B - B 

BCB 

Figure 4. Series Concepts Learned by the 

SCI Series Extrapolation Program. 
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Series 

1. CDCDCD 

2. AAABBli 

3. ATBATAATB 

4. RSRTKURV 

5. ABMCDMliF 

6. DEFGEFGI1 

7. QXAPXBQXA 

8. ABCDABCEA 

9. MABMBCMCÜM 

10. URTUSTU 

U. MNLNKNJ 

12. ABYAB)u\B 

13. RSCDSTÜE 

14. NPAOQAPR 

15. MNOMOOMPO 

16. WXAXYBY 

17. JKQRKLRS 

18. PÜNONMNM 

19. CEGEDEHEEE 

28. 
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Concept Prediction 

xl x2 -»■ xl CDC 

xl x2 x5 -»■ xl' ccc 
xl x2 x3 x4 x5 x6 * xl ATA 

R x2 R -* x2, RIVR 
xl x2 ■*  xl 

xl M x3 xl1 ' -*■  M MGH 
xl x2 x3 ■*■  xl" 

xl x2 x3 x4 - xl' 

xl x2 x5 x4 x5 x6 ■♦ xl 

C x2 x5 x4 C -<■ x2, 

xl x2 x3 x4 ■»■ xl 

M x2 x3 x4 x5 x6 M -»■ x2" 
xl x2 M x4 x5 x6 xl'' X21 ' - M 

xl x2 x5 x4 x5 x6 xl1 ' -► x2" 
xl x2 x3 x4 x5 x6 -> xl 

U x2 x3 U -» x2, 

xl x2 x3 -* xl 

xl N 'xl - N 
xl x2 ■»• 'xl 

B x2 x3 B -K ,x2 
xl x2 x3 ->• xl 

xl x2 x3 x4 -* xl' 

xl A x3 xl' -»• A 
xl x2 x5 ■♦ xl' 

M x2 x3 M -► x2' 
xl x2 x3 -»• xl 

xl x2 x3 -<■ xl' 

xl x2 x3 x4 -»• xl' 

xl x2 x3 -* 'xl 

xl E x3 x4 xl' -^ E 
xl x2 x3 x4 -♦ xl» 

Füll 

PXB 

BCF 

DEM 

TTU 

NIN 

WAS 

TUE 

AQS 

MQO 

2C2 

IMS 

LML 

IEF 

Figure 5. Series Concepts learned by the SC2 

Series Extrapolation Program. 



B " n ■ « ' ■       I ■ 

29. 

eliminated from the concept descriptions. Figure 6 contains more diffi- 

cult series concepts learned by SC2. The S5K program, or any program 

based on intra-period relations, would tend to have difficulty with 

these series. Note that .series 4 in Figure 6 is another that the K5W 

template matching procedure would be unable to solve. 

Even though the SC2 progra.T- is an extension of SCI they do not always 

make the same predictions, particularly when given ambiguous series. For 

example, given the series AbßA, SCI makes the simple extrapolation: 

BBA.... or simple repetition of period 3. However, SC2 (and the KciW pio- 

gram) would find a more complex extrapolation of period 2, i.e., CZD... 

For unambiguous simple repetition series, SCI and SC2 always make the same 

predictions, but SC2 produces a simpler concept after a much greater compu- 

tational effort. 

VI.  CONCLUSION 

A learning technique has been presented for finding regularities in 

sequential patterns.  It consists of nothing more complex than forming an 

ordered set of hypotheses about which pattern contexts lead to which new 

pattern elements. The learning system starts with very general hypotheses, 

i.e., rules which apply to particular classes of patterns. As these rules 

are proven erroneous their generality is reduced by adding new rules above 

them which apply to subclasses of these patterns. More specifically, 

learning proceeds by first assuming that only one element in a particular 

pattern context is relevant and then, as this is proven false, falling 

back to the less general assumption that other elements in that pattern 

context are also relevant. When the learning phase is complete, the system 

has learned which pattern elements are relevant given any particular 

pattern context. 



-»-^-^i^mmm 

30, 

Series 

1. ABCCDEFFG 

2. DDCCODBDEAO 

3. BADBAUCE 

4. AAABBBCACBÜ 

5. ABCBCDCDLF 

6. ADUACUAEUABUAF 

Concept Predictions 

Xl x2 x3 x4 * xl' " HI1 

xl I) x3 'xl - 1) FZD 
D x2 x3 D -»• x2' 
xl x2 x3 ■♦ 'xl 

1 x2 x5 x4 'xl -* x2," 2GB 
xl x2 x3 x4 ■♦ 'xl 

xl A x3 x4 A3 x6 xl'' -»A 
xl B x3 x4 x5 x6 xl" -» B 

xl x2 x3 x4 x5 x6 ->• xl* ' 

C x2 x3 x4 C x2" - x3' ' 
xl C x3 x4 xl'' -* C 

xl x2 x3 xl -► xl" ' 

xl U A x4 xS X6 'xl U A -♦ x4' 
U A x3 x4 x5 x6 U A - 'x3 
A x2 x3 x4 x5 x6 A -+ x2' 

Xl U x3 x4 x5 x6 'xl - U 
xl x2 x3 x4 x5 x6 * xl 

BEA 

CFG 

UAA 

Figure 6.     Difficult Series Concepts Learned 
by the SC2 Series Exatrapolation Program 
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The preceeding remarks  apply to both the basic learning technique 

and to the extension of that technique.    However in the extension of the 

basic  learning technique an additional generalization process  is present. 

This  is  the process of characterizing the relations between elements of 

the pattern in a very general way before adding the rule containing these 

pattern elements to the system.    Here a specific rule is made more general 

subject to constraints imposed by the current strategy for recognizing 

relations.    Only one such strategy  (the template strategy)  was presented 

in this paper.    As mentioned earlier it involved hypothesizing a period 

size and only recognizing relations between corresponding elements of 

adjacent periods.    However by making the strategy for recognizing relations 

a little more sophisticated it  should be possible to create a single unified 

program which can Uam series concepts based on both inter-period and 

intra-period relations. 

The production system learning technique was presented primarily as 

an artificial intelligence implementation of sequence extrapolation,  rather 

than as a model of human problem solving.     In  fact,  comparison with Restle's 

work  indicates that the  learning technique may more closely model human 

sequence prediction than sequence extrapolation,  even though  the two are 

very closely related.    Since both extrapolation and prediction require 

pattern acquisition,  it might be useful to examine the implications of 

this  learning technique  for a general theory of human serial pattern acqui- 

sition.     First,  it implies that some portico of human long term memory is 

organized in the form of a production system or set of condition-action 

rules.    Second,  it implies that these rules have an order imposed on them, 

i.e..  given any rule,  one can find the next rule in the list.    However, 
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this ordering does not imply that conditions on rules are accessed serially, 

"me matching of production rule conditions against data in short term 

memory is considered to proceed in parallel*, leading to a set of rules 

whose conditions match the data. A single rule is chosen from this con- 

flict set on the basis of relative location in long term memory, and its 

actions are executed. Thus response latency is not necessarily propor- 

tional to production system size. Third, the learning technique implies a 

memory for the locations of rules recently fired. This follows from the 

necessity of incorporating new rules into the system in front of error- 

causing rules.  Finally, it implies that learning serial patterns involves 

a liberal use of memory capacity in order to reduce computational complexity. 

It is felt that this learning technique can be generalized to other 

induction-type tasks. A similar, though much simpler, technique has already 

been used in a production rule simulation of verbal learning (Waterman. 

1974).  Another similar, but more complex, technique has been used in a 

production system program which learns heuristics for draw poker (Waterman. 

1970). 

*This is currently implemented as a simple serial process, 
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